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In  recent years many problems concerned with the dispersion of a passive 
contaminant along pipes and channels have been investigated, and this paper 
is concerned with one such problem which arises in diverse applications. This is 
the study of the longitudinal dispersion of a contaminant whose concentration 
is prescribed as a harmonic function of time at  one cross-section. On the basis 
of physical arguments and of detailed calculations for two laminar flows it is 
shown that for high frequencies the concentration pattern is transported down- 
stream at the maximum fluid velocity but that for low frequencies it is trans- 
ported at  the discharge velocity, and that the fluctuations in concentration decay 
to zero in a much shorter downstream distance for high frequencies than for 
low frequencies. It is shown further that at high frequencies the concentration is 
exponentially small except near the places where the fluid velocity attains its 
maximum, whereas for low frequencies the variation in concentration over the 
cross-section is small. Some of these conclusions are compared with those made 
by others, and the agreement is in general satisfactory. 

1. Introduction 
This paper analyses the way in which dye (or heat) diffuses in a pipe containing 

fluid in steady flow when the distribution of concentration (or temperature) 
is prescribed as a sinusoidal function of time at one fixed cross-section of the 
pipe. In  particular, information about the velocity at which the pattern is trans- 
ported downstream, and the rate at which it decays, is obtained for two laminar 
flows, and some remarks are made about turbulent flows. 

Aspects of this problem have been investigated by three authors who were each 
motivated by different physical problems. Brinkman (1950) was concerned with 
the variation of temperature within a capillary tube so that he could investigate 
the variation of viscosity. Carrier (1956) investigated this problem because of 
its application t o  a group of experimental techniques in which the concentration 
of solute emerging from a long tube is determined and has to be related to the 
concentration at an upstream cross-section. One such technique is used in 
micrometeorology (with carbon dioxide and water vapour) and was mentioned 
as a motivation by Philip (1963a,b). Philip also referred to the dispersal of 
soluble materials in blood vessels and in the water-conducting organs of plants. 

In  addition it is evident that the mathematical problem described above is 
important in the investigation of any linear unsteady dispersion problem in a 
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pipe because of the principle of superposition and the technique of Fourier 
analysis. That the problem is linear is equivalent to the assumptions that buoy- 
ancy effects are negligible? and that the molecular diffusion of dye (or heat) is 
independent of concentration (or temperature). Both of these assumptions will 
be made in this work so that attention is focused on the interaction between 
advection and diffusion. 

The methods used in this paper differ from those used by the above authors. 
The results obtained here should, nevertheless, include those obtained by 
Philip, but there are differences, which will be discussed in $3.  

2. Structure of the solution in laminar flow 
Governing equations 

Distance along the axis of the pipe will be measured by the co-ordinate x, with 
x = 0 being the cross-section at which the concentration C is prescribed as a 
sinusoidal function of time. In  fact it  will be assumed that at this place C is 
uniform over the cross-section so that, at x = 0, 

C = C, + C, eht, (2.1) 
where C, and C, are constants. The analysis could be extended to the more general 
case where C, and C, vary with position in the plane x = 0. 

The pipe will be assumed to be straight and of constant cross-section. Thus in 
laminar flow the fluid velocity will be in the axial direction, steady, and depen- 
dent only on Y and 2, the co-ordinates in the cross-sectional plane made dimen- 
sionless by a length a typical of the cross-section. Suppose the discharge velocity 
is U.  Then the fluid velocity can be written as U V ( Y , Z ) ,  and C satisfies the 
equation 

where K is the molecular diffusivity. Solutions of (2.2) must satisfy (2.1), and also 
a condition on the flux of C across the walls of the pipe. In  this paper the case 
when the walls are impermeable (to matter or heat) will be the only one con- 

(2 .3 )  
sidered.3 Thus on the boundary ac,an = o. 

Now (2.2) has solutions of the form 

C = C, + exp [iw(t - hx/U)] f (  Y ,  Z ) ,  

[I - hV( Y ,  Z)]f+ rg)”. a y  a y  iwa2 
provided that - + - = - 

8 ~ 2  a 2 2  K 

The last term in (2.5) is the effect of axial diffusion and is of order wKh2/U2 
times the first term on the right-hand side, which is the effect of advection. In  

-f This is a questionable assumption if concentrations are not low enough. See Erdogan 
& Chatwin (1967). 

$ The choice of (2.3) was made for two reasons: (a )  because my main interest is in the dis- 
persion of matter, and ( b )  to enable comparison to be made with the work of the authors 
referred to in $1, all of whom used (2.3) (although Brinkman also considered the boundary 
condition C = constant). 
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the diffusion of matter in laminar flows in liquids K z m2s-I, so that for the 
values w z 277 (day)-l and U z 103m(day)-l, which are typical for the experi- 
ments considered by Carrier (1956), wK/U2 z 5.5 x l0-lo. For a case when 
w z 2ns-I and U z 10-2m s-l then wK/U2 % 6 x For the diffusion of heat 
the values of m / U 2  are typically 100 times bigger. These numbers suggest that 
provided h = O(l) ,  a result consistent with the results later in this paper, the 
effect of axial molecular diffusion can be ignored. Thus (2.5) will be replaced by 

ay ay -+- = iQ[l-h‘V(Y,Z)]f, 
ay2 a 2 2  

where Q = wa2/K, (2.7) 

af/an = 0 (2.8) 

and the solutions of (2.6) must satisfy 

on the boundary by virtue of (2.3). 
Now (2.6) has solutions satisfying (2.8) only if h is a member of the set of dis- 

crete eigenvalues, and for each possible h there is one f determined up to a multi- 
plicative constant. Now suppose f ,  and f ,  satisfy (2.6) and (2.8), with the values 
of h equal to A, and A, respectively. By means of standard techniques it follows 
that, ifp + q)  

~JVf,f,dYdZ = 0, (2.9) 

where the double integral is over the whole cross-section. Also, assuming the 
f, form a complete set, then 

C = C,+C.A,exp[iw(t-h,x/U)]f,(Y,Z), (2.10) 
P 

and the constants A,  can be determined so that (2.1) is satisfied, if the ortho- 
gonality relations (2.9) are used in the normal way. 

Denote the complex conjugates of A, and f P  by overbars. Prom (2.6) it follows 
that 

and so, denoting the operator (a/aY, 8 / 8 2 )  by V, 

Integration of the last two equations over the cross-section gives, using (2.8), 
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FIGURE I. Sketch showing three equal-phase lines in Poiseuille flow (the curved lines). The 
particles on a given line were all at the cross-section A A  (at which C is prescribed) at  the 
same time, and the different equal-phase lines correspond to different times of ‘release’ 
from AA.  The aentre-line BB is that on which the fluid velocity attains its maximum. Notice 
that the equal-phase lines are closest together near the wall and furthest apart on BB. 

where V’,, is the maximum value attained by V .  This result is not surprising. 
It says that the disturbance cannot be transported at a negative velocity nor at 
one greater than the maximum fluid velocity. But more information can be 
obtained. Suppose it happens that I f p \  is small except near the place(s) where 
V = Vmax. Then the denominator in (2.11) is approximately Vm,/j/f,[VYdZ 
so that Re (A,) is approximately i/Vmax. 

From (2.12), again supposing V 2 0, it follows that 

W A , )  < 0, (2.14) 

so that all solutions are spatially decaying. It is convenient to order the hp in 
ascending magnitude of their negative imaginary parts so that 

0 < -Im(ho) < - Im(A,) < .... 

Hence, from (2.10), for large x ,  

C E Co + A o  exp [iw(t - hox/ U ) ] f o (  Y ,  2). (2.15) 

Thus for large x the concentration pattern is transported at a velocity U/Re (A,) 
and decays in an axial distance of order - U/Im (Ao). 

Expected results for high and low frequencies 

Figure 1 shows, for one flow, lines of equal phase of concentration a short dis- 
tance downstream of x = 0. In  a short distance lateral diffusion has had little 
effect, so that the lines of equal phase are each similar to the velocity profile. 
In  any flow the greatest lateral separation between two lines of equal phase is at  
and near the points where V has its maximum V,,,. 

For a given phase difference two lines of equal phase will be closest together for 
high frequencies and the smoothing effect of lateral diffusion will then be most 
marked. This smoothing effect will be selective. Phase differences will persist 
longest near the line(s) where V = V,,,. It can therefore be anticipated that for 
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high frequencies (Q $ i) the transport velocity will be near the maximum fluid 
velocity, that is that Re (A,) will be near 1/Vmax. 

For low frequencies (a < 1) and a given phase difference two lines of equal 
phase are more widely separated than for high frequencies. The smoothing effect 
of lateral diffusion will therefore be less marked for Q < i than for % 1. 
Indeed the frequency may be so low that phase differences will persist for a long 
distance downstream, so that they become unimportant locally. Thus, following 
Taylor (1953), lines of equal phase will move downstream at the discharge velo- 
city U ,  and will disperse longitudinally as a result of the local interaction between 
lateral diffusion and advection. The longitudinal dispersion will therefore be 
governed by a diffusion equation with a diffusion coefficient, K say, determined 
from the velocity distribution in the manner described by Taylor (i953). Hence, 
forQ < 1, 

(2.16) 

and variations in C over the cross-section will be small compared with longi- 
tudinal variations. Thus fo( Y ,  2) in (2.15) will be approximately constant; then 
(2.15) satisfies (2.i6) provided 

-Kwht/U2 = i ( l -ho) .  (2.17) 

But it is known (Taylor 1953) that 

K = AU2a2/K, (2.18) 

where A is a dimensionless number. From (2.i7) and (2.18) it follows that, for 

A, = 1-iA52+0(Q2).  (2 . i9)  
Q < 1 ,  

3. Detailed calculations for Poiseuille flow in a circular pipe 
Let a be the radius of the pipe, so that 

P = 2(1 -R2), where R2 = Y2+ Z2. (3.1) 
Then (2.6) becomes 

&(B$ = iQ[1-2h(l-R2)]f. 

This equation can be reduced to the confluent hypergeometric equation (Philip 
1963a), and has the everywhere-finite solution 

where 
ia 4 2h-1  

/3 = (2ihQ)t, y = (2A) - (-+ 
(3.3) 

(3.4) 

and the square roots have positive real parts. I n  (3.3), &(a; b; x )  is Kummer’s 
function (Slater 1960, p. 2).  Now 
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so that (2.8) is satisfied if 

(3.5) 
The values of h satisfying (3.5) are the required eigenvalues. Although (3.5) 
cannot be solved exactly, it is possible to derive approximate results for the cases 
Q B 1 and Q < 1 which were considered earlier. 

14(-7; 1; /4+2y lq(1 - -Y;2;  p, = 0. 

High frequency input 

For Q B I the real part of A, is near l/Vmax = 4-, so that 1/31 B 1. Now for JzI +- M) 

andRe(z) > 0 

(Slater 1960, p. 60). Hence (3.5) reduces to 

P + r  r( ep - Y) [ l + O ( k ) ]  = 0, 

and this can be satisfied to highest order only if r( -7) B 1, i.e. if 

Thus, using (3.4), 

and using (3.3), it follows that 

y z p ( p  = 0,  1 ,2 ,  . . .). 

A, z * + ( 2 p +  l ) / ( iQ) i  ( p  = 0, I, 2, ...), (3.6) 

fi3 z exp{-+(iQ)FtRz}lli;( - p ;  1; (iB)BR2). 
In  particular, f o  z exp { - Z b  1 *Q ) tP}.  (3.7) 

Thus from (2.15), (3.6) and (3.7) it follows that, for s1 B 1, 

provided x is not too small. So for high frequency the distribution of concentra- 
tion is exponentially small excspt in a region of thickness a Q 4  centred on the 
axis and decays in a distance of order ( Ua2/K) Q-*. The transport velocity is equal 
to 2U,  the maximum fluid velocity in the pipe. These conclusions accord with the 
qualitative arguments in $2. 

Low frequency input 

For Q 1 the arguments of $2 suggest that A, has a real part near 1 and an 
imaginary part of order Q. This can be confirmed by supposing that (3.2) can be 
satisfied by expansions of the form (Carrier 1956) : 

(3.8) 1 h = Aoo+hOla+ho2Q2+ ..., 
f = foe@) +fOm Q + f o m  QZ + - -. * 

Substitution into (3.2) and equating coefficients of like powers of B leads to an 
infinite set of differential equations which can be integrated only if the coeg- 
cients hoO, hol, . . . , in (3.8) have certain values. Substituting these values into the 
first equation of (3.8) gives 

if2 a2 + o(n3). (3.9) - I - - - -  '- 48 1920 
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~ ~~ ~ 

2U (i.e. maxi- 
mum fluid velo- 
city) 

High frequency 
input: l2 > 1 

( Uaz/K) C2-h 

Low frequency 
input: l2 < 1 

U (i.0. discharge 
velocity) 

48( U a 2 / ~ )  

D escription of 
cross-sectional 
variation of G 
(determined 
from form off,) 

~~ 

Exponentially 
small except in 
a layer of thick- 
ness an-* 
centred on axis 
i.e. place at  
which fluid velo- 
city is a maxi- 
mum ___ -. . - 

Approximately 
uniform 

Values of A, for 
p > l  

8 i  

9!2 
Ap = -- 

~ ( 3 p - 2 ) '  
( p  = 1 , 2 ,  ...) 

TABLE 1. Summary of results obtained for Poiseuille flow in a circular tube of radius a, 
discharge velocity U and molecular diffusivity K .  Cl = w a 2 / K  

For this value of A,, the value of f, is determined up to a constant of normaliza- 
tion. If this is chosen, without loss of generality, so that fo has unit mean over the 
cross-section then f, = I +-&@(I- 6R2+ 3R4) + O(Q2).  (3.10) 

The details of the method are given by Carrier (1956) as are, in essence, the re- 
sults (3.9) and (3.10). These results are consistent with (2.16), (2.18) and (2.19) 
since for this flow the value of A in (2.18) is 

The values of Aoo, Aol,. .. are determined uniquely. Thus the values of Ap 
for p 9 1 cannot be expanded in power series like (3 3). Nor is it possible for A, to 
be of order an as a+ 0 where n > 0 for this would imply a transport velocity of 
order U9-* as 9 -f 0, which is much greater than the maximum fluid velocity in 
the pipe and thus unacceptable. It is natural to suppose therefore that, for p $ 1, 

A, = X,Q-ne-i%, 

where X,, nand 8, are positive, the last since Im (A,) < 0, by (2.14). By means of 
asymptotic expansions of lFl(a; b ;  z )  for z and 2b - 4a both increasing in such a 
way that z x (2b - 4a) (Slater 1960, pp. 86-88) it can be shown that 0, = in, 

A, z - (8 .3 /9Q) (3~-2 )~  ( p  = 1,2,  ...). (3.11) n = 1 and that 

As is usual in such applications of asymptotic expansions, the derivation of 
(3.1 1) is based on the assumption that p is large and so it cannot be expected to 
be very accurate for smallp. However, it is significant that A, is purely imaginary 
for p 9 1, so that only the component of C coming from A, is transported away 
from x = 0. The other components simply decay. 

The results of the calculations in this section are summarized in table I .  
It will be noted that for given Ua2/K the concentration decays much more rapidly 
for Q % 1 thanfor 9 < 1. 

(Taylor 1953). 
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n = 102 Present work: see 0.57-0-07i 0.7 1-0.21i 0.85-0.35i 
(3.6) 

see (3.13) 
Philip’s results: 0.57-0.08i 0.73-0.24.3 2.3 2-0.3 2i 

n = 103 

Comparison of results with those of others 
Philip (1963a, b )  investigated solutions of (3.2) by expanding f ( R )  as a series of 
Bessel functions of order zero, viz. 

m 

Present work: see 0-51-0-01i 0.52-0.02i 0.54-0-04i 

Philip’s results: 0-53-0-01i 0.73-0.02i 2-36-0.02i 
(3.6) 

see (3.13) 

(3.12) 

where &,(,urn) = 0 (so that (2.8) is satisfied) and p0 = 0. Substitution of (3.12) 
into (3.2) leads after some algebra to an infinite determinantal equation for A, 
which replaces equation (3.5) of the present paper. Philip assumed that the 
eigenvalues could be obtained approximately by replacing the infinite deter- 
minant by the finite determinants derived from it and containing successively 
1 , 2 , 3 ,  . . . , terms of the leading diagonal. The determinant of order 1 gives a first 
approximation to A,; that of order 2 gives a second approximation to A, and a 
first approximation to A,, and so on. 

The adequacy of this method for M > I is questionable since it can be shown 
that forfo(R) given by (3.7) the B, in (3.12) increase with m for small m, so that 
fo cannot be well represented by the first few terms of (3.12). For B 1, Philip 

11.1 531 
iQ 

21.7 769 
aB !2 

23.3 
aB 

A, = 0-53+-+2,+O(Q-3); 

A, = 0.73+---+0(Q2-3); 

A, = 2*36+-+0(Q2-2).  

(3.13) 

~. 

obtained 

These results should be the same as (3.6). Table 2 compares (3.6) with (3.13) 
and it can be seen that the discrepancies are worse for M = lo3 than for !2 = 102. 
This supports the preceding argument that Philip’s method is incorrect as M + 00. 

For M < I ,  f J R )  is no longer concentrated near one value of R and the above 
criticisms of Philip’s method for M B 1 no longer apply. Philip obtained 

A, = 1-O-0208iQ-O-OO05!,22+O(Q3);~ 
12-8 51.7 

A, = -+0(1); %!,2 A, = -+O( l ) .  %Q 
(3.14) 
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Brinkman (1950) obtained the values of 

lim (A, sl> 
Q+O 

for small p directly from the power-series expansion of $!,(a; b ;  2). He obtained, 
effectively, 

12.8 41-9 87.3 
lim (if%) = 0; A, = - + O ( l ) ;  mi2 A, = = + O ( l ) ;  A, = = + O ( l ) .  
f i + O  

(3.15) 

The results in (3.14) and (3.15) should be consistent with those in (3.9) and 
(3.11). Since & = 0.0208 ... and & = 0.0005 ..., the value of A.  given by (3.9) 
is the same as that given by Philip. For A,, A,  and A,, (3.11) gives 

A, M 14.2lii2; A, fi: 43-6liQ; A, M 88*9/iQ. (3.16) 

The agreement between this and Brinkman's results is good, and best for A,. 
This is expected, since (3.1 1) was derived on the assumption that p is large. The 
value of A, given by Philip agrees exactly with Brinkman's, but his value for 
A, is about 25 % too high (although, as Philip notes, his value of A, is only a$& 
approximation). 

4. Detailed calculations for Couette flow in a two-dimensional channel 
Suppose that the channel has depth 2a, and that the boundaries are at Y = k 1, 

with the one at Y = - 1 at rest and that at  Y = + 1 moving. Then 

V ( Y )  = ( 1 +  Y ) ,  
d2fldY2 = iQ[l-h-AY]f. and (2.6) becomes 

Now (4.2) has solution 
1 ,  

AY + A -  1 h Y + A - 1  
f=MJi (  a )+N,Bi( a ), (4.3) 

where a = (-h2/iQ)i, (4.4) 

the principal value of the cube root being taken, and Ai (2) and Bi (2) are Airy 
functions (Copson 1965, chap. 9). The boundary condition (2.8) can be satisfied 
for HI and M, not both zero only if 

(4.5) 

The values of A which satisfy (4.5) are the required eigenvalues (so that (4.5) 
here plays the same role as (3.5) in Poiseuille flow). 

2A, = 1 + X ,  Q-m e-%, 

where X,, TZ and 6, are positive, the last since Im (A,) < 0, by (2.14). Thus, using 

For Q B  1 it is expected that Re (A,) is near l/Vmax = &. Write 

(4.4)Y 
1 fi: e-i(Bp'&) X (4Q1-3")). a - M e-By4a)B; P 
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It follows that I llal 9 1, and hence that 

Ai‘ ( - 1/a) M - iBi‘ ( - l/a), 

using the relevant asymptotic expansions. Hence (4.5) is equivalent to 

[X (4Ql-3n)i ,-i@,+&r)] - i Bi’ [ X  (4Q1--3n)P e-i@ p + + ’I, P P 

and can be satisfied only if n = &. Then from asymptotic expansions for X ,  
large it follows after some algebra that 

and thus that f, x Ai[(l- Y)(4~iSZ)*-($n(4p+l))Q]. (4.7) 

Hencef, is exponentially small except in a layer of thickness aQ-* near Y = 1, 
the place where the fluid velocity attains its maximum. From (4.6) it follows that 
the signal decays in a distance of order (Ua2/K) Q-3. Apart from slight differences 
in the indices due to geometry these results are the same as those for Poiseuille 
flow. 

For 0 < 1 the techniques used for Poiseuille flow lead to the following results: 

2 i  sz gin2 
15 3 2 0  A, = l - - + O ( Q 2 ) ;  A, = ---$I2 ( p  = 1,2, ...). 

The value of A, is consistent with the qualitative arguments in $2, since for this 
flow the value of Taylor’s longitudinal diffusivity K is &U2a2/K, so that A in 
(2.18) is&. 

5. Some remarks on turbulent flow in a circular pipe 
In Ianiinar flow a2/K is the time taken for a fluid molecule to wander over the 

cross-section whereas the corresponding time in turbulent flow is a/u*, where uy: 
is the friction velocity. Thus the parameter oa/u* plays the same role in turbulent 
flow as w a Z / ~  in laminar flow. The arguments of $2 then suggest that for wa/u* % 1 
the concentration pattern is transported downstream a t  the maximum fluid 
velocity (about 1.1 U )  and that it is observable only near the centre of the pipe. 
For wa/u* 4 1, on the other hand, it is expected that (2.16) holds with K w 10.1 
au* (Taylor 1954), provided that the Reynolds number is high enough for the 
viscous sublayer to have negligible effect on the value of K.  These conclusions 
receive some support from observations by Bentley & Dawson (1966) although 
these observations were made on the centre-line of a 1 in. diameter pipe in which 
there were bends and in which there were wire-wool obstructions. Figure 7 of this 
paper shows that for o = 47rs-l the temperature pattern was transported at  a 
velocity of the order of 1. lU when the discharge velocity was of the order of 
1 f t  s-l, whereas the transport velocity was close t o  the discharge velocity when 
the latter was of the order of lofts-l. 

If it is assumed that the lateral mixing can be described by an eddy diffusivity 
calculated from Reynolds’ analogy then quantitative estimates of the A, and 
f ,  can be made, in principle at  least. But there is the practical point that the 
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fluctuating part of the distribution of concentration arising from the imposed 
variation will be difficult to separate from that due to the turbulent fluctuations. 

I wish to thank Professor G. K. Batchelor for bringing this problem to my 
attention and for useful discussions. During the period when this work was done 
I was receiving financial support from the Science Research Council. 
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